1. The number of permutations of r objects from n distinct objects is

$$n(n-1)\cdots(n-r+1) = \frac{n!}{(n-r)!}, \ r \le n$$

- 2. The number of combinations of selecting r objects out of n is given by $\binom{n}{r} = \frac{n!}{(n-r)!r!}$
- 3. The number of ways to distribute n distinct balls into r different urns is $r^{n'}$.
- 4. The number of ways to distribute *n* identical balls into *r* different urns without empty urns is $\binom{n-1}{r-1}$. If empty urns are allowed, then this number is $\binom{n+r-1}{r-1}$.
- 5. Probability of union of events:

$$P(E \cup F) = P(E) + P(F) - P(EF)$$

$$P(E \cup F \cup \cup G) = P(E) + P(F) + P(G) - P(EF) - P(EG) - P(FG) + P(EFG)$$

6. If P(F) > 0, then P(E|F), the conditional probability of event E given that F has occurred, is

$$P(E|F) = \frac{P(EF)}{P(F)}$$

7. Total probability:

$$P(E) = \sum_{i=1}^{n} P(E|F_i) P(F_i)$$

where the events $F_j, j = 1, 2, \dots, n$, are a partition of the sample space. 8. Bayes' formula,

$$P(F_{j}|E) = \frac{P(EF_{j})}{P(E)} = \frac{P(E|F_{j})P(F_{j})}{\sum_{i=1}^{n} P(E|F_{i})P(F_{i})}$$

where the events F_j , $j = 1, 2, \dots, n$, are a partition of the sample space. 9. Two events E and F are independent if P(EF) = P(E)P(F).

10.
$$\sum_{i=1}^{n} = \frac{n(n+1)}{2}, e^x = \sum_{i=0}^{\infty} \frac{x^i}{i!}, \sum_{n=0}^{\infty} q^n = 1/(1-q), 0 < q < 1.$$

	Random variable	Parameter	the p.m.f.	$\mathbf{Expectation}$	Variance
	X		p(k)	E[X]	Var(X)
11.	Binomial	(n,p)	$\binom{n}{k} p^k (1-p)^{n-k}$	np	np(1-p)
			$k=0,1,\cdots,n$		
	Poisson	λ	$e^{-\lambda}\frac{\lambda^k}{k!}, k = 0, 1, 2, \cdots,$	λ	λ
	$\operatorname{Geometric}$	p	$(1-p)^{k-1}p, k = 0, 1, \cdots$	1/p	$(1-p)/p^{2}$

¹ This sheet will be attached with the mid-term exam.